
Chapter 18

ELECTRON-PROTON

INSTABILITY

18.1 INTRODUCTION

An intense particle beam forms a potential well for oppositely charged particles and

will therefore trap particles of opposite sign. These trapped particles can often accu-

mulate to each an extent that they provide a potential well for particles of the original

beam. Thus, the secondary beam can oscillate transversely in the potential well of the

primary beam and the primary beam can oscillate transversely in the potential well of

the secondary beam. This coupled beam oscillation may grow in amplitude and lead to

beam loss eventually. This is called two-stream instability.

Proton beam trapping electrons has first been observed in the Bevatron [1] and later

in the CERN ISR [2]. The ISR is a collider with an intense coasting proton beam in each

of the intersecting vacuum chambers. It has been observed that electrons were trapped

in the potential of the proton beams with oscillation frequency around 100 MHz. The

instability is intermittent. It stops when the electrons, driven to large amplitudes, are

shaken out to the walls, or out of resonance with the protons. It restarts when a sufficient

number of new electrons has been accumulated. Slow beam blow-up and background

problems are the result.

The PSR at Los Alamos (LANL) running with 2.3 to 4.2× 1013 protons has always
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Figure 18.1: Top trace: vertical difference signal of the beam reveals a growing

instability about 300 µs after the end of injection. Lower trace: sum signal of the

beam showing beam loss as the instability grows.

Figure 18.2: Turn-by-turn vertical difference signals from a short stripline BPM

at the final 300 µs of the store show a vertical instability starting at the back end

of the bunch and spreading into the whole bunch with increasing amplitude. The

bunch sum profiles from a wall current monitor are also shown revealing a beam

loss as the instability develops.
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Figure 18.3: Turn-by-turn electron signal is shown in relation to the proton beam

pulse at PSR. Electrons start to appear at the back end of the beam pulse.

been troubled by the electrons trapped inside the proton beam [3]. A turn by turn

picture of the electron signal in relation to the circulating beam pulse at the end of a

500 ms store of stable beam is shown in Fig. 18.3. The timing between electrons and

proton beam is good to a few ns. The electron detector was designed and built at ANL.

It has a repeller grid, so that it can decouple the electron energy analysis from collection.

The repeller voltage of 5 volts means the electrons have to be above 5 eV in order to

get through to the collector. Electrons start to appear after the peak of the beam pulse

has passed and the peak of the electrons appears at the end of the beam pulse. Higher

repeller voltage shows a smaller, and narrower pulse.

An instability is clearly seen when beam is stored for about 300 microseconds after

the end of injection. A rapidly growing vertical difference signal (top trace) can be seen

shortly before the beam loss lower trace, indicating the beam centroid oscillation. In

Fig. 18.2, the growth of the instability can be seen turn by turn at the final ∼ 300 µs

of the store. Here the vertical difference signal is compared to the wall current monitor

trace. The beam transverse instability starts on the backside of the pulse and broadens

out as it grows in strength. Some beam loss is evident at the last turn before extraction.

The Brookhaven booster running in the coasting beam mode suffers sudden beam loss

due to a vertical instability [4], which cannot be identified with any reasonable amount
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of transverse impedance. This has been considered to be the result of e-p instability.

The Fermilab antiproton ring traps positive ions and limits the intensity of the storage

[5]. The newly built APS at ANL is a synchrotron light source using a positron beam. It

has been observed that electrons are trapped causing instability [6].

18.2 SINGLE-ELECTRON MECHANICS

Coupled-centroid oscillation of the proton beam and the trapped electron beam will

occur only when the amount of electrons becomes very intense. Therefore, to prevent

such instability, we would like the electrons in the vacuum chamber not to accumulate.

The electrons inside the vacuum chamber are supposed not to move longitudinally. As

the proton bunch passes through them, they are attracted towards the central axis of the

proton bunch with vertical electron bounce frequency Ωe/(2π) given by [11]

Ω2
e =

4Nrec2

aV (aV + aH)Lb
. (18.1)

Here, Np is the number of protons in the bunch which has an elliptical cross section with

vertical and horizontal radii aV and aH, Lb is the full bunch length, and re the electron

classical radius. We assume that the proton beam has uniform longitudinal and radial

distribution and has a cylindrical cross section with radius a inside a cylindrical beam

pipe of radius b. Thus aV (aV + aH) can be replaced by 2a2. The images of the proton

beam and the electron cloud in the walls of the vacuum chamber will modify the electron

bounce frequency depicted in Eq. (18.1), but their effects are neglected in this study. Also,

only linear focusing force by the proton beam on the electrons is considered.

An electron trapped inside the proton beam performs betatron oscillations with an

equivalent betatron function βb = βc/Ωe with a total betatron phase advance φb =

ΩeLb/v, where βc is the velocity of the protons. After the passage of the proton bunch,

the motion of the electron in the gap is equivalent to a drift of length Lg = λrf − Lb with

λrf being the rf wavelength or stationary bucket width. Here, we assume all rf buckets

are filled. The transfer matrix for an rf wavelength is [7]

M=

(
1 Lg
0 1

) cosφb βb sinφb

− 1

βb
sinφb cosφb

=

cosφb−
Lg
βb

sinφb βb sinφb+Lg sinφb

− 1

βb
sinφb cosφb

 .

(18.2)
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Table 18.1: Some data of the Oak Ridge SNS, the Los Alamos PSR, and the
Brookhaven booster at injection.

Oak Ridge Los Alamos Brookhaven

SNS PSR Booster

Circumference C (m) 220.6880 90.2000 201.769

Injection kinetic energy (GeV) 1.000 0.797 0.200

γ 2.0658 1.8494 1.2132

β 0.8750 0.8412 0.5662

Revolution frequency f0 (MHz) 1.1887 2.7959 0.8412

Revolution period T0 (ns) 841.3 357.7 1189

Total number of protons Np 2.1×1014 4.2×1013 2.4×1013

Rf harmonic (no. of bunches) h 1 1 1

Number of injection turns 1225 2000 300

Repetition rate (Hz) 60 12 7.5

In order that the electron will not be trapped inside the proton bunch, its motion has to

be unstable or
1

2
|TrM | =

∣∣∣∣cosφb −
Lg
2βb

sinφb

∣∣∣∣ > 1 . (18.3)

If the electron is unstable, we can write

1

2
|TrM | = coshµ , (18.4)

where µβc/λrf is the growth rate of the electron oscillation amplitude, and µ−1 is the

growth time in rf buckets. Here, we study the effect of trapped electrons in the 3 rings:

the SNS spallation storage ring to be built at Oak Ridge (ORNL), the Los Alamos PSR,

and the booster at Brookhaven (BNL). Some information of the three rings are listed in

Table 18.1.

Equation (18.3) appears to be a simple criterion. In fact, it is much more complex,

because the electron bounce frequency turns out to be usually a large number. Take for

example the PSR, we find Ωe = 1.254 GHz, which gives an equivalent betatron function

βb = βc/Ωe = 0.201 m. With the gap length 30.07 m, Lg/βb = 150. Although Ωe is not

sensitive to Lg/βb, it is very sensitive to the phase φb = ΩeLg/v ≈ 299 rad and therefore

to sinφb and cosφb. Thus, a very slight change in the number of protons in the beam will

alter the electron bounce frequency, the betatron phase, and give rise to a large change
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Table 18.2: Instability and escape time through the bunch gap of a single electron
trapped inside the proton bunches of the ORNL SNS, LANL PSR, and BNL booster.

Oak Ridge Los Alamos Brookhaven

SNS PSR Booster

Injection full bunch length (m) 143.39 60.13 100.89

Gap length (m) 77.30 30.07 100.89

Proton beam radius a (m) 0.0380 0.0150 0.0150

Bounce angular frequency Ωe (MHz) 713.3 1253.9 462.6

Bounce betatron phase φb (rad) 309.9 299.0 435.2
1
2
|TrM | (rms) 52.55 37.38 108.8

Escape time in no. of rf buckets 0.2148 0.2318 0.1858

in the trace. Since the electron bounce frequency usually has a large spread, it is more

reasonable to consider the rms value of the trace instead.

The results of 1
2
|TrM | are listed in Table 18.2. We see that for all the 3 rings, the

electrons trapped should be able to escape to the walls of the beam pipe in the beam gap.

In fact, with such high electron bounce frequency, Lg/βb will be large, it will not be easy

to trap any electrons if the gap is clean. When the intensity of the proton beam is raised,

the electron bounce frequency will increase, making the electrons easier to escape at the

gap.

Sometimes, the gap is not totally free of protons. The space-charge effect of the

protons will distort the rf bucket reducing its momentum acceptance. As a result, some

protons may leak out of the bucket and end up in the bunch gap. If a fraction η of the

protons leaks into the gap, the electron will oscillate with bounce frequency Ωeb/(2π) inside

the proton beam and bounce frequency Ωeg/(2π) in the bunch gap. These frequencies are

given by [7, 9]

Ω2
eb = Ω2

e(1− η) and Ω2
eg = Ω2

eη
Lb
Lg

. (18.5)

Again, only linear focusing force by the proton beam is considered. The betatron phase ad-

vances in the beam and in the gap are, respectively, φb = ΩebLb/(βc) and φg = ΩebLg/(βc).

The transfer matrix is therefore

M =

 cosφg βg sinφg

− 1

βg
sinφg cosφg

 cosφb βb sin φb

− 1

βb
sinφb cosφb


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=

 cosφg cosφb −
βg
βb

sinφg sin φb βb cosφg sinφb + βg cosφb sinφg

− 1

βg
cosφb sin φg −

1

βb
cosφg sinφb −

βb
βg

sinφb sinφg + cosφg cosφb

 , (18.6)

where the equivalent betatron functions in the bunch and in the gap are, respectively,

βb =
βc

Ωeb
and βg =

βc

Ωeg
. (18.7)

The condition for the electrons to escape is therefore

1

2
|TrM | =

∣∣∣∣cosφg cosφb −
1

2

(
Ωeb

Ωeg
+

Ωeg

Ωeb

)
sinφg sinφb

∣∣∣∣ > 1 . (18.8)

It is easy to demonstrate that Eq. (18.8) becomes Eq. (18.3) when η → 0.

Figure 18.4 show 1
2
TrM as a function of the fractional proton leakage η into the gap,

respectively, for the ORNL SNS, LANL PSR, and BNL Booster. The plots for the ORNL

SNS and LANL PSR are very similar; 1
2
TrM oscillates rapidly with the fractional leakage

and becomes bounded by ±1 or electrons will be trapped when η >∼ 0.05. The situation

for the BNL booster is different. Even up to η = 0.20, the oscillation of 1
2
TrM still has an

amplitude larger than 1. This is mainly due to the fact of a larger gap-to-bunch-length

ratio in the BNL Booster. Thus, we may conclude that electrons are not so easily trapped

in BNL booster as in the ORNL SNS and LANL PSR when protons are spilled into the

bunch gaps. We also try to vary the electron bounce frequency in each case and find that

the results remain relatively the same. The only changes in the plots are faster oscillations

when the bounce frequency is increased.

18.3 CENTROID-OSCILLATION INSTABILITY

Consider coupled oscillation of the proton beam and the electron ‘beam’ in the ver-

tical direction. The displacements of a proton and electron from the central axis of the

vacuum chamber are denoted, respectively, by yp and ye. Here, we assume both the

proton and electron beams are coasting beams having the same transverse sizes and uni-

form distribution longitudinally and transversely. The coupled equations of motion are

[11, 7, 4, 13](
∂

∂t
+ ω0

∂

∂θ

)2

yp +Q2
βω

2
0yp = −Q2

pω
2
0(yp − ȳe) +Q2

psω
2
0(yp − ȳp) , (18.9)
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Figure 18.4: The ORNL SNS: Electrons will be trapped if 1
2
TrM falls between the

±1 dashed lines. The 3 plots are, from top down, for the ORNL SNS, LANL PSR,

and BNL Booster.
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d2ye
dt2

= −Q2
eω

2
0(ye − ȳp) +Q2

esω
2
0(ye − ȳe) , (18.10)

where ȳp and ȳe are the vertical displacements of the centroids of, respectively, the proton

and electron beams from the axis of the vacuum chamber, ω0 is the angular revolution

frequency, θ is the azimuthal angle around the ring, Qβ is the betatron tune, and Qp and

Qe are, respectively, the oscillation tune of the electrons inside the proton beam and the

oscillation tune of the protons inside the electron beam. We have

Ω2
e = (Qeω0)2 =

4Nprec2

aV (aH + aV )C
, (18.11)

Ω2
p = (Qpω0)2 =

4Nprpc
2χe

aV (aH + aV )γC
, (18.12)

where χe is the neutralization factor, or the ratio of the electron distribution to the proton

distribution. In above, rp is the classical proton radius, re the classical electron radius, and

C the circumference of the accelerator ring. The negative signs on first terms on the right

hand sides of Eqs. (18.9) and (18.10) indicate that the protons are focused by the electron

beam and the electrons are focused by the proton beam. The factor γ in the denominator

of Ω2
p comes about because the protons are circulating around the ring while the electrons

do not. Notice that there are no magnetic force contributions. For Ωe, the electron has

no velocity although it sees a magnetic field from the proton beam. For Ωp, the proton,

although at a high velocity, does not see a magnetic field in the stationary electron beam.

Again, we are considering uniformly and cylindrical-symmetrically distributed proton and

electron beams of radius a; or aV (aH+aV )→ 2a2. Image effects in the walls of the vacuum

chamber as well as nonlinear focusing forces are neglected.

The last term in the proton equation denotes the oscillations of the proton under the

self-field of the proton beam. Here,

(Qpsω0)2 =
4Nprpc2

aV (aH + aV )γ3C
(18.13)

is proportional to the linear space-charge tune shift of the proton beam. Similarly the

last term in the electron equation, with

Q2
es = Q2

eχe (18.14)

denoting the space-charge tune shift of the electron beam, depicts the corresponding

oscillations of the electron in the self-field of the electron beam.
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Averaging over the proton displacements and electron displacements, we obtain the

equations for the coupled motion of the proton-beam centroid ȳp and the electron-beam

centroid ȳe. Notice that the space-charge terms, Q2
ps and Q2

es, drop out. If there is a

coherent instability occurring at the angular frequency ω = Qω0, we can write

ȳp ∼ ei(nθ−ωt) and ȳe ∼ ei(nθ−ωt) , (18.15)

where n is the longitudinal harmonic number. The coupled equations can be readily

solved to give

(Q2 −Q2
e)[(n−Q)2 −Q2

β −Q2
p]−Q2

eQ
2
p = 0 , (18.16)

which is a quartic. For a solution when Q is near Qe, we can expand Q around Qe. When

Qp or the neutralization factor χe is large enough, the solution becomes complex and an

instability occurs. The limiting Qp for stability is given by

Qp
<∼
|(n−Qe)2 −Q2

β −Q2
p|

2
√
Qe|n−Qe|

, (18.17)

from which the limiting neutralization factor χe can be obtained. Once above threshold,

the growth rate, given by

1

τ
=
Qpω0

2

√
Qe

|n−Qe|
, (18.18)

is very fast. Notice that Q2
p on the right side of Eq. (18.17) in the numerator can be

neglected because usually Q2
p � Q2

β.

A proper employment of Eq. (18.17) is important, because it can give meaningless

result. For example, in the situation:

[Qe] = [Qβ] or [Qe] + [Qβ] = 1 , (18.19)

where [Qe] and [Qβ] are, respectively, the residual betatron tune and the residual electron

bounce tune, there will always exist a harmonic n which leads to instability for Qp → 0 or

neutralization χe → 0. However, the growth rate will go to zero also. In reality, there is

always a variation in the proton linear density or the electron bounce tune Qe usually has

a spread. Also the betatron tune can be suitably adjusted. For this reason, to estimate

the threshold, we first compute Qe from Eq. (18.11). Then the most offending harmonic

n is determined as the integer closest to Qe +Qβ. We next modify Qe slightly so that

n−Qe −Qβ =
1

2
. (18.20)
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Table 18.3: Coherent centroid-oscillation instability for proton-electron coasting
beams.

Oak Ridge Los Alamos Brookhaven

SNS PSR Booster

Total number of protons Np 2.10×1014 4.2×1013 4.42×1013

Betatron tune Qβ 5.82 2.14 4.80

Proton beam radius a (m) 0.0380 0.0150 0.0150

Qp/
√
χe 1.2501 1.000 1.313

Most offending harmonic n 83 61 67

Qe = n−Qβ − 1
2

76.68 58.36 79.70

Limiting Qp 0.1379 0.0963 0.1229

Limiting neutralization χe 0.0122 0.0093 0.0132

Growth rate in number of turns 0.663 0.703 0.668

Landau damping with (∆Qβ−2∆Qsc)/Qβ = 0.03 and ∆Qe/Qe−χe = 0.25

Limiting Qp 0.5040 0.1853 0.4157

Limiting neutralization χe 0.1626 0.0343 0.151

Growth rate in number of turns 0.176 0.340 0.386

Notice that one can also determine n as the integer closest to |Qe − Qβ|. However, the

threshold neutralization will in general be higher than that obtained by the first method

if a difference less than 1
2

is used on the right side of Eq. (18.20).

With this consideration, the results are listed in Table 18.3. Here, the intensity of

4.42×1013 protons is used for the Brookhaven booster, where coasting beam experiments

with possible e-p instabilities have been observed. We notice that the neutralization

threshold is about 1.2% for the ORNL SNS, 0.9% for the LANL PSR, and 1.3% for the

BNL booster. Once the thresholds are reached, the growth rates are very fast and the

corresponding growth times are less than one turn for all the 4 machines.

There is another consideration of the stability of the two beam centroids, since the

coherent oscillation can be stabilized by Landau damping. The equation of motion of the

electron, Eq. (18.10), can be viewed as an undamped oscillator driven by ȳp, the centroid

of the proton beam. Thus, spreads in the proton betatron tune Qβ and/or proton bounce

tune Qp alone will not be able to damp the electron oscillations. To damp the electron

oscillation, there must be a spread in the electron bounce tune Qe. The same applies to

the equation of motion of the proton, Eq. (18.9), driven by the centroid of the electron
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beam. Therefore, to provide Landau damping to the coupled-centroid oscillation, there

must exist large enough spreads in both the betatron tune ∆Qβ and the electron bounce

tune ∆Qe.

First, we rewrite Eqs. (18.9) and (18.10) as(
∂

∂t
+ ω0

∂

∂θ

)2

yp +Q
′2
p ω

2
0yp = Q2

pω
2
0ȳe −Q2

psω
2
0 ȳp , (18.21)

d2ye
dt2

+Q
′2
e ω

2
0ye = Q2

eω
2
0 ȳp −Q2

esω
2
0 ȳe , (18.22)

where we have denoted

Q′p
2

= Q2
β +Q2

p +Q2
ps and Q′e

2
= Q2

e +Q2
es . (18.23)

Second, with the ansatz in Eq. (18.15), the coupled differential equations becomes

yp =
−Q2

pȳe +Q2
psȳp(

Q− nθ̇

ω0

)2

−Q′2p

, (18.24)

ye =
−Q2

eȳp +Q2
esȳe

Q2 −Q′2e
. (18.25)

Third, we need to integrate both sides with the suitable distribution functions. In doing

so, two approximations are to be made: (1) only the denominators of Eqs. (18.21) and

(18.22) depend on the distributions which appear in differences of squares but not the

numerator, and (2) only the slow wave will be included. It is then easy to obtain

ȳp = −
Q2
p

2Q′pδQp
ȳe +

Q2
ps

2Q′pδQp
ȳp (18.26)

ȳe = +
Q2
e

2Q′eδQe
ȳp −

Q2
es

2Q′eδQe
ȳe (18.27)

where

δQ
′−1
p =

∫
Fp(s)ds

n −Q′p −Q+ δps
(18.28)

δQ
′−1
e =

∫
Fe(s)ds

Q′e −Q+ δes
(18.29)
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δp =
∂

∂s

(
Q′p(s)−

nθ̇(s)

ω0

)
s=0

(18.30)

δe =

(
∂Q′e(s)

∂s

)
s=0

(18.31)

and Qp, Q′p, Qps, Qe, Q′e, Qes in Eqs. (18.26) to (18.29) are all evaluated at s = 0. Here,

s being a generic variable, which can represent amplitude, momentum spread, etc, while

Fp(s) and Fe(s) are distributions normalized to unity for the protons and electrons. From

Eqs. (18.26) and (18.27), it is easy to get(
2δQ′p +

Q2
ps

2Q′p

)(
2δQ′e +

Q2
es

2Q′e

)
−
Q2
pQ

2
e

Q′pQ
′
e

= 0 . (18.32)

Now following Laslett, et al, semi-circular distributions,

Fp(s) =
2

πs2
1/2p

√
s2

1/2p − s2 and Fe(s) =
2

πs2
1/2e

√
s2

1/2e − s2 , (18.33)

are assumed for both the protons and electrons. One obtains{
2δQ′p = Q′p − n+Q+ i∆̄p ,

2δQ′e = Q′e +Q+ i∆̄e ,
(18.34)

where  ∆̄p =
√

∆Q2
p − (Q− n+Q′p)

2 ,

∆̄e =
√

∆Q2
e − (Q−Q′e)2 ,

(18.35)

while ∆Qp and ∆Qe are the actual half spread of Q′p and Q′e in these distributions and

are related to δp and δe in Eqs. (18.30) and (18.31) by

∆Qp = s1/2pδp = s/2p
∂

∂s

(
Q′p(s)− nθ̇(s)

ω0

)
s=0

(18.36)

∆Qe = s1/2 eδe = s1/2 e

(
∂Q′e
∂s

)
s=0

(18.37)

Substitution into Eq. (18.32) leads to a quadratic equation in the coherent coupled-

oscillation tune Q, the solution of which is

Q = Q′e +
Q2
es

Q′e
+ d1 −

i

2
(∆̄e + ∆̄p)± i

{
Q2
pQ

2
e

Q′pQ
′
e

−
[
d1 −

i

2
(∆̄e − ∆̄p)

]2
}1/2

, (18.38)
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where

d1 =
1

2

[(
n−Q′p −

Q2
ps

Q′p

)
−
(
Q′e +

Q2
es

Q′e

)]
. (18.39)

It is clear that stability requires in Eq. (18.38)

Re
{ }

≥ 1

2
(∆̄e + ∆̄p) . (18.40)

This criterion is equivalent to, after considerable amount of algebra,

∆̄p∆̄e ≥
Q2
pQ

2
e

Q′pQ
′
e

[
1 +

(
2d1

∆̄p + ∆̄e

)2
]−1

. (18.41)

Within a narrow band of instability, associated with the resonance d1 ≈ 0, or n−Q′p−Q ≈
Q2
ps/Q

′
p and |Q′e−Q| ≈ Q2

es/Q
′
e, the stability limit can be simplified. With the substitution

of Eq. (18.35), we finally arrive at[
∆Q2

p −
(
Q2
ps

Q′p

)2
]1/2 [

∆Q2
e −

(
Q2
es

Q′e

)2
]1/2

≥
Q2
pQ

2
e

Q′pQ
′
e

. (18.42)

Because square roots are involved, we also require

∆Qp >

∣∣∣∣Q2
ps

Q′p

∣∣∣∣ and ∆Qe >

∣∣∣∣Q2
es

Q′e

∣∣∣∣ . (18.43)

It is important to point out that the space-charge self-force terms of Eqs. (18.9)

and (18.10) do not drop out when averaged over the distributions. As an approximation,

Q′p ∼ Qβ implying that Q2
ps/Q

′
p ∼ 2∆Qsc, where ∆Qsc is the linear space-charge tune shift

of the proton beam. Similarly, we can write Q2
es/Q

′
e ∼ Qeχe, which is twice the linear

space-charge tune shift of the electron beam. The stability condition then simplifies to

[
∆Q2

β − 4∆Q2
sc

]1/2 [
∆Q2

e − χ2
eQ

2
e

]1/2 >∼
Q2
pQe

Qβ
. (18.44)

Because of the square roots on the left side of Eq. (18.44), we also require for stability,

∆Qβ ≥ 2Qsc and
∆Qe

Qe
≥ χe . (18.45)

The spread in the electron bounce frequency is difficult to measure. However, when

instability occurs, the electron bounce frequency is very close to the coherent instability
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frequency, which is the same for the proton beam and the electron. Thus measuring the

coherent transverse oscillation frequency of the proton beam, we can infer the electron

bounce frequency. According to the measurement at PSR, ∆Qe/Qe ∼ 0.25. Assuming

that the neutralization factor is small, we may set the half maximum fractional spread

of the electron bounce tune to be ∆Qe/Qe − χe ∼ 0.1, and the half maximum fractional

spread of the betatron tune in excess of twice the space-charge tune shift is (∆Qβ −
2∆Qsc)/Qβ ∼ 0.03. The limiting Qp and neutralization factor χe can now be computed

and are also listed in Table 18.3. For the ORNL SNS and the Brookhaven booster, the

threshold neutralization factors have been increased to 16.3% and 15.1%, respectively,

which are more than 10 times. For the LANL PSR, however, the neutralization threshold

χe becomes ∼ 3.4%, an increase of less than 4 times. Further increase in threshold requires

larger spreads in Qe and Qβ . In fact, it has been demonstrated that anti-damping can

even happen unless there is a large enough overlap between ∆Qβ and ∆Qe [11]. Notice

that these stability limits of the neutralization factor can be sensitive to the distributions

of the betatron tune and the electron bounce tune.

A stability condition has also been derived by Schnell and Zotter [11] assuming

parabolic distributions for the betatron tune and the electron bounce tune, but with-

out consideration of the space-charge self-forces. They obtain

∆Qβ

Qβ

∆Qe

Qe

>∼
9π2

64

Q2
p

Q2
β

. (18.46)

Notice that the Schnell-Zotter criterion is essentially the same as the Laslett-Sessler-Möhl

criterion, if we interpret ∆Qβ of the former as the half tune spread of the betatron tune in

excess of twice the space-charge tune spread of the proton beam, and ∆Qe as the half tune

spread of the electron bounce tune in excess of twice the space-charge tune spread of the

electron beam. The factor 9π2/64 in Eq. (18.46) is probably a form factor of the parabolic

distributions. Our discussion can be generalized when we notice that both Q2
ps/Q

′
p and

Q2
es/Q

′
e in Eq. (18.42) come from, respectively, the ȳe term in Eq. (18.9) and the ȳp

term in Eq. (18.10). Thus, Q2
ps and Q2

es can be extended to include the perturbations

of oscillations coming from all types of impedances of the accelerator ring. In that case,

the Schnell-Zotter stability criterion should be valid if we interpret ∆Qβ as the half tune

spread of the betatron tune in excess of what is necessary to cope with the instabilities

of the single proton beam, and ∆Qe as the half tune spread of the electron bounce tune

in excess of what is necessary to cope with the instabilities of the single electron beam.
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18.4 PRODUCTION OF ELECTRONS

As seen in the previous section, the e-p coherent centroid-oscillation instability de-

pends strongly on the neutralization factor, or the amount of electrons trapped inside the

proton bunch.

One source of electron production is through collision of the protons with the residual

gas in the vacuum chamber. At a vacuum pressure of 1× 10−7 Torr, there is a residual

gas density of nres = 3.2 × 109 molecules/cm3. The expected average ionization cross

section is σi = 1.2 × 10−18 cm2. If the residual gas is mostly bi-atomic molecules, each

contributing two electrons, the rate of electron production is [9]

dNe

dt
= 2βcnresσiN(t) , (18.47)

where N(t) is the number of protons accumulated from injection at time t. If tinj is the

total injection time, N(t) = Npt/tinj, where Np is the total number of protons at the end

of the injection. The neutralization due to ionization collision at the end of injection is

therefore

χe =
Ne

Np
= βcnresσitinj . (18.48)

The vacuum pressure for the ORNL SNS is designed to be 1× 10−9 Torr and that for the

LANL PSR is 2× 10−8 Torr, while the other ring is with vacuum pressure 1× 10−7 Torr.

The neutralization due to ionization collision turns out to be 0.104%, 1.39%, and 2.33%,

respectively, for the ORNL SNS, LANL PSR, and BNL booster. The neutralization

factors are large for PSR and the BNL booster because of their relatively low vacuum and

long injection times of, respectively, ∼ 2000 and 300 turns. The maximum neutralization

of the ORNL SNS is small because of the very high vacuum.

Another source of electron production is through the multi-traversing of the stripping

foil by the proton beam. For example, a proton in the LANL PSR can generate on the

average two electrons because of the presence of the stripping foil.

A more important source of electron production is when an electron hitting the

walls of the beam pipe releases secondary electrons. These secondary electrons can cause

multipactoring and generate a large amount of electrons. Here, we would like to compute

the energy of an electron hitting the beam pipe and estimate the efficiency of secondary

emission [10].

An electron is oscillating with bounce frequency Ωe/(2π) with amplitude increasing
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exponentially with an e-folding growth rate ωI . Assume that the electron just grazes the

wall of the beam pipe at time t = 0. Its amplitude is given by

y = beωIt cos Ωet , (18.49)

where b is the beam pipe radius. It will hit the other side of the wall at time t1 =

(π −∆)/Ωe, where

−b = beωIt1 cos Ωet1 = be(π−∆)ωI/Ωe cos(π −∆) , (18.50)

which leads to

∆ =

√
2πωI
Ωe

[
1 +O

(√
ωI
Ωe

)]
. (18.51)

The velocity of the electron hitting the other side of the wall can be obtained by differ-

entiating Eq. (18.49) and is given by

ẏ = b
√

2πωIΩe

[
1 +O

(√
ωI
Ωe

)]
. (18.52)

The kinetic energy is therefore

Ekin = πmeωIΩeb
2 , (18.53)

where me is the electron mass.

For single-electron motion, we can identify the growth rate ωI = µβc/λrf , where µ

is given by Eq. (18.4). The velocities and kinetic energies of the electrons hitting the

wall on the other side of the beam pipe are listed in Table 18.4. We see that when

hitting the beam pipe wall, the electrons possess kinetic energies of 198.6, 775.4, and

139.5 eV, respectively, for the 3 rings. For the BNL booster, the bunched mode intensity

has been used. It is a known fact that an electron in excess of 100 eV hitting a metallic

wall will result in a secondary emission coefficient greater than unity. This implies that

multipactoring will occur in these rings. This consideration is for the motion of a single

electron and is independent of the amount of electrons present in the ring. In the design

of the ORNL SNS, the beam pipe will be made of stainless steel with a titanium coating,

which will reduce the secondary emission efficiency and thus prevent multipactoring to

occur. An experiment was performed at the LANL PSR by coating part of the walls

of the vacuum chamber with TiN. The electron flux was found to have been suppressed

about 1000 times [14].

We can also identify ωI with the growth rate τ−1 of the coherent centroid oscillation

in Eq. (18.18). The kinetic energy for an electron hitting the other side of the beam pipe



18-18 CHAPTER 18. ELECTRON-PROTON INSTABILITY

Table 18.4: Kinetic energy of electron hitting the wall of the beam pipe.

Oak Ridge Los Alamos Brookhaven

SNS PSR Booster

Total number of protons Np 2.1×1014 4.2×1013 2.4×1013

Beam pipe radius b (m) 0.0500 0.0500 0.0600

Single-electron consideration

Electron escaping rate ωI (MHz) 6.24 13.9 4.69

Ωe (MHz) 713.3 1253.9 462.6

Velocity hitting wall ẏ/c 0.0279 0.0551 0.0234

Kinetic energy hitting wall (eV) 198.6 775.4 139.5

Coherent-centroid-oscillation consideration

Threshold neutralization χe 0.0122 0.0093 0.0066

Growth rate ωI (MHz) 1.793 3.976 0.644

Ωe (MHz) 572.7 1025.2 554.6

Velocity hitting wall ẏ/c 0.0134 0.0267 0.0095

Kinetic energy hitting wall (eV) 4.62 182.9 23.0

wall becomes

Ekin =
πmeQpQ

3/2
e ω2

0b
2

2
√
|n−Qe|

. (18.54)

Notice that the kinetic energy of the electron hitting the pipe wall is now proportional

to Qp and therefore
√
χe. These are listed in Table 18.4 at the threshold neutralization.

Notice that the kinetic energies of the electrons hitting the beam pipe walls at the onset of

coupled-centroid instability are less than 100 eV for the ORNL SNS and the BNL booster

in the bunched mode. Thus multipactoring will occur only if the neutralization factor is

much larger than ∼ 1%. On the other hand, the electron kinetic energy is 182 eV for the

PSR. Thus multipactoring will occur before the onset of coherent centroid instability.

18.5 BOUNCE FREQUENCY

E-p instability is different from other transverse instability in that the bounce fre-

quency of the electrons inside the proton bunch is very broad. Recall that the angular



18.5. BOUNCE FREQUENCY 18-19

Figure 18.5: The PSR is run at CD 1 with 6.1 µC. The electron bounce frequency

is measured to be centered at ∼ 200 MHz, close to the theoretical prediction.

The total spread of the bounce frequency is roughly 100 MHz, the same order

of magnitude as its center value. Operated at CD 2 with 3.0 µC, the bounce

frequency reduces to ∼ 140 MHz, roughly by
√

2 times as expected.

bounce frequency is defined as

Ωe =

√
4λrec2

aV (aV + aH)
. (18.55)

where λ is the linear particle density of the proton bunch. Thus, the bounce frequency

of the electrons depends on where they are inside the proton bunch. For example, if the

electrons are trapped within the proton FWHM bunch profile, the spread of the bounce

frequency will be 1/
√

2 its mean value, which is certainly a wide spread. Another test

of the e-p bounce oscillation is to measure the dependency of the bounce frequency on

the proton beam intensity. As is given by Eq. (18.55), the bounce frequency should be

proportional to the square root of the proton intensity. Such a measurement has been

performed at the Los Alamos PSR and is shown in Fig. 18.5. At countdown 1 (CD 1),

the longest chopped proton beam is injected from the linac. At 6.1 µC or 3.81 × 1013

proton injected, the electron bounce frequency observed is ∼ 200 MHz, very close to the

prediction of Eq. (18.55). Next the injection is at countdown 2 (CD 2), where the chopped

beam from the linac is injected into the PSR on alternate turns, thus reducing the total
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injection intensity by half to 3.0µC. The bounce frequency is found to peak at ∼ 140 MHz,

very close to a reduction of
√

2 as predicted. The total spread of the bounce frequency at

CD 1 is about 100 MHz, which is also the same order of magnitude as predicted above.

18.6 DISCUSSIONS AND CONCLUSION

(1) In the above single-electron analysis, it appears that electrons will be cleared in

the bunch gap within one rf wavelength for all the 3 proton rings under consideration.

However, if more than η ∼ 4% of the protons are spilled into the bunch gap, electrons

will be trapped inside the proton beam in the ORNL SNS and LANL PSR. For the BNL

booster, on the other hand, electrons are relatively more difficult to be trapped when

there are spilled protons in the bunch gaps even if η > 20%. This is probably due to its

much larger gap-to-bunch-length ratio.

(2) For coherent centroid oscillation to become unstable, neutralization factors of

χe ∼ 1.2%, 0.9%, and 1.1% are required, respectively, for the three machines. How-

ever, spreads in the betatron frequencies and the electron bounce frequencies can provide

Landau damping.

(3) The LANL PSR may accumulate protons through an injection in ∼ 2000 turns

and the BNL Booster in 300 turns. The vacuum pressures of both rings are relatively

high, ∼ 1 × 10−8 Torr for the former and ∼ 1 × 10−7 Torr for the latter. As a result,

the amount of electrons per proton produced by collision with residual gases can be as

high as 1.39 and 2.33%, respectively, for the two rings. However, the electron production

for the ORNL SNS via proton-ion collision is less than 1%, which is the result of a high

vacuum of 1× 10−9 Torr in the vacuum chamber.

(4) Multipactoring as a result of secondary emission will be possible for all the three

rings when single electron escapes from the trapping proton beam and hits the metallic

beam pipe. For the LANL PSR, multipactoring will occur before the onset of coherent

centroid instability. However, for the other two rings, multipactoring will not occur as

soon as centroid oscillations become unstable.

(5) There is a similar proton ring called ISIS at the Rutherford Appleton Laboratory.

At the injection energy of 70.4 MeV, about 2.5× 1013 protons are stored as a continuous

coasting beam, which is then captured adiabatically into 2 rf buckets. The protons are
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ramped to 0.8 GeV when they are extracted. No e-p instabilities have ever been observed

at ISIS either running in the bunched mode or the coasting-beam mode. This has always

been a puzzle. However, when we compare ISIS with the LANL PSR, we do find some

important differences. First, ISIS has a repetition rate of 50 Hz. The injection is fast,

about 200 turns. On the other hand, it usually takes about 200 turns for the e-p instability

of the PSR to develop to a point when it can be monitored. Second, ISIS has a much

larger vacuum chamber, 7 cm in radius. Also the ISIS vacuum chamber is made of ceramic

to limit eddy current because of the high repetition rate of 50 Hz. However, a wire cage

is installed inside the ceramic beam pipe to carry the longitudinal return current. The

wire cage does not allow transverse image current to flow, thus alleviating in some way

the transverse instability. Also the cage wires have much less surface area than the walls

of an ordinary metallic beam pipe. As a result, secondary emission will be reduced.

The secondary emitted electrons will come out in all directions from the cage wires. The

probability for them to hit another cage wire will be small, thus preventing multipactoring

to occur. These may be the reasons why e-p instabilities have never been observed at

ISIS.

18.7 EXERCISES

18.1. Modify the coupled proton and electron equations of motion [Eqs. (18.9) and (18.10)]

by including the influence of an infinitely conducting cylindrical beam pipe of radius

b. Without taking into account the distributions of the various tunes, solve the

equations for the threshold of coupled-centroid instability [similar to Eq. (18.17)]

and the initial growth rate [similar to Eqs. (18.17) and (18.18)].

18.2. Derive in detail Eq. (18.54) for the kinetic energy of an electron hitting the wall of

the beam pipe after it grazes the opposite wall.

18.3. In the experiment for measuring coupled-centroid instability at the Los Alamos

PSR, the bunch occupies 2/3 of the circumference of the storage ring. The coherent

frequency which is close to the electron bounce frequency at CD 1 or 6.1 µC is

shown in Fig. 18.5. Other information of the PSR are listed in Table 18.1.

(1) Assuming a parabolic linear distribution of the proton bunch, and the maximum

coherent or bounce frequency of 240 MHz, estimate the transverse size of the proton

beam.

(2) From the peak value of the bounce frequency, estimate the location along the

proton beam where the electron density is at a maximum.
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18.4. Fermilab is proposing a new high intensity booster having circumference 711.304 m

with rf harmonic 4. Protons are injected at the kinetic energy of 400 MeV to an

intensity of 8.6× 1012 per bunch. At the end of injection, each proton bunch has a

uniform linear density but is occupying 2/3 of the rf bucket. The transverse cross

section of the beam is circular with a radius of 2.35 cm.

(1) Assuming the bunch gap is totally clean, show that electrons will not be trapped

inside the proton beam.

(2) If a fraction η of protons is spilled into the bunch gaps, compute the minimum

η that will lead to electron trapping.

18.5. Starting from the equations of coupled transverse motion, Eqs (18.9) and (18.10),

assuming circular distributions for the protons and electrons, derive the Laslett-

Sessler-Möhl stability criterion, Eq. (18.42).
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